`

C++引用计数

 
阅读更多

主要参考《提高C++性能的编程技术》第12章 引用计数

 

设计思路

1. rc.h中:

(1) 提供RCObject,内部封装了refCount及其基本加减操作

(2) 提供RCPtr,是一个智能指针。普通的智能指针内部封装一个基本类型的指针,但这里的智能指针内部封装的是指向RCObject类型的指针。因此,这个智能指针可以根据RCObject维护的引用计数变量refCount来实现引用计数的优势,如:

       “赋值时复用”:在赋值操作时,只用refCount++即可复用已经在堆上创建好的原有实例;

       “自动释放”: 在引用计数refCount==0时,自动析构掉对象。

2. rc.cpp

    使用引用计数时候,要做两件事情。

(1) 继承RCObject,以便拥有refCount及其基本加减操作

class BigInt : public RCObject{

      ...

};

(2) 引用计数版本的BigInt——RCBigInt,内部封装BigInt的智能指针RCPtr<BigInt>,这样就可以“赋值时复用”和“自动释放”

class RCBigInt {
      ...
private:
      RCPtr<BigInt> value;
};

 

引用计数的优缺点

       结合代码,用脚趾头也能想明白上面设计的优缺点——

缺点:引用计数版本RCBigInt在创建时,由于又在内部套一个智能指针,又是创建refCount的,效率反而更慢;

优点:但是引用计数版本RCBigInt在赋值时,可以直接refCount++,就很快;并且refCount==0时,也不用手工去释放。

 

rc.h

#ifndef RC_H
#define RC_H

/*
  RCObject:引用计数类型的基类 
*/
class RCObject{
public:
       void addReference(){ ++refCount;}
       void removeReference(){
            if(--refCount == 0){
                delete this;
            }
       }
       void markUnshareable(){
            shareable = false;
       }
       bool isShareable() const{ return shareable; } /* 可否共享 */
       bool isShared() const {return refCount > 1; } /* 是否已经被共享 */ 
protected:
       RCObject():refCount(0), shareable(true){}
       RCObject(const RCObject& rhs):refCount(0), shareable(true){}
       RCObject& operator= (const RCObject& rhs){ return *this; } //?
       virtual ~RCObject(){}  //?virtual
private:
        int refCount;         /* 引用计数 */ 
        bool shareable;       /* 可否共享 */
};

/*
  RCPtr:封装了"引用计数类型RCObject的指针"的"智能指针"
  (1) 智能指针:
      本质上就是通过重载operator->和operator*操作符,在内部封装一个非智能指针的对象 
  (2) (支持引用计数的)智能指针: 
      内部封装的是一个 "指向RCObject类型的指针" 
      注:使用RCPtr<T>时保证,模板参数T是RCObject的子类 
*/
template<class T>
class RCPtr{
public:
       RCPtr(T *realPtr = 0): pointee(realPtr) { addRef(); }  //Ctor参数是 "指向RCObject类型的指针"
       RCPtr(const RCPtr& rhs): pointee(rhs.pointee) { addRef(); }  //Ctor参数是 "指向RCObject类型的指针"的"智能指针" 
       ~RCPtr(){
                if(pointee)
                    pointee->removeReference();
       }
       T* operator-> () const {return pointee;} /* member access: operator-> */
       T& operator* () const {return *pointee;} /* deference: operator* */
       RCPtr& operator= (const RCPtr& rhs); /* operator= */
private:
       T *pointee;  /* 指向RCObject类型的指针 */
       
       void addRef();  /* 尝试本引用计数++ */
};

template<class T>
void RCPtr<T>::addRef(){  
     if(0==pointee)
         return;
     if(false == pointee->isShareable()){//如果不能共享引用对象,则拷贝创建新的引用对象 
         pointee = new T(*pointee);
     }
     pointee->addReference();
}

template<class T>
RCPtr<T>& RCPtr<T>::operator= (const RCPtr& rhs){
    if(pointee != rhs.pointee){
        if(pointee)
            pointee->removeReference();
        pointee=rhs.pointee;
        addRef();
    }
}

#endif
         

 

rc.cpp

#include "rc.h"
#include <iostream>
#include <time.h>
using namespace std;

/*
  BigInt: 继承自RCObject,复用其引用计数的功能
  注意:继承了RCObject,只是拥有了引用计数的facility(计数变量refCount),但并不能带来任何好处;
        如果要用到引用计数的好处(赋值时避免复用以前堆中创建的),则必须同时用"智能指针"才行。 
*/
class BigInt : public RCObject{
      friend BigInt operator+ (const BigInt&, const BigInt&);
public:
      BigInt( const char *);
      BigInt( unsigned = 0);
      BigInt( const BigInt& );
      
      BigInt& operator= (const BigInt&);
      BigInt& operator+= (const BigInt&);
      ~BigInt();
      
      char *getDigits() const {
           return digits;
      }
      
      unsigned getNdigits() const{
           return ndigits;
      }
private:
      char *digits;       /* 低char存放低十进制位, 每位以unsigned int形式存入char(而非ASCII码) */
      unsigned ndigits;   /* 十进制位# */
      unsigned size;      /* 容量 */ 
      
      BigInt(const BigInt&, const BigInt&);            /* operational Ctor */ //???
      char fetch(unsigned i) const;
};

BigInt::BigInt(const char *s){
      if(s[0]=='\0'){
            s="0"; 
            //???对于0,统一成特殊情况'0'(ASCII码的'0')跟一个'\0'(即0) 
      }
      size = ndigits = strlen(s);
      digits = new char[size];
      for(unsigned i=0; i<ndigits; ++i){
          digits[i] = s[ndigits-1-i] - '0';
      }
}

BigInt::BigInt(unsigned u){
      unsigned v=u;
      for(ndigits=1;(v/=10)>0;++ndigits);
      
      digits = new char[size=ndigits];
      for(unsigned i=0;i<ndigits;++i){
            digits[i]=u%10;
            u/=10;
      }
}

BigInt::BigInt(const BigInt& copyFrom){
      size = ndigits = copyFrom.ndigits;
      digits = new char[size];
      
      for(unsigned i=0; i<ndigits; ++i){
            digits[i] = copyFrom.digits[i];
      }
}

BigInt& BigInt::operator= (const BigInt& rhs){
      if(this == &rhs)
            return *this;
            
      //如果size不够,则扩展char[] 
      ndigits = rhs.ndigits;
      if(ndigits > size){
            delete [] digits;
            digits = new char[size=ndigits];
      }
      
      for(unsigned i=0; i<ndigits; i++){
            digits[i] = rhs.digits[i];
      }
      
      return *this;
}

BigInt& BigInt::operator+= (const BigInt& rhs){
      //"必要时",size扩展到max 
      unsigned max = 1 + (rhs.ndigits > ndigits ? rhs.ndigits : ndigits);
      if( size < max ){
            char *d = new char[size=max];
            for( unsigned i = 0; i<ndigits; ++i){
                 d[i] = digits[i];
            }
            delete [] digits;
            digits = d;
      }
      
      //高位补0
      while( ndigits < max){
            digits[ ndigits++ ] = 0;
      } 
      
      for(unsigned i=0; i<ndigits; ++i){
            digits[i]+=rhs.fetch(i);
            if(digits[i]>=10){
                  digits[i]-=10;
                  digits[i+1]++;
            }
      }
      if(digits[ndigits-1]==0){//最高位没有进位时 
            --ndigits;
      }
      
      return *this; 
}

BigInt::~BigInt(){
      delete [] digits;
}

BigInt::BigInt(const BigInt& left, const BigInt& right){
      size = 1 + (left.ndigits > right.ndigits ? left.ndigits : right.ndigits);
      digits = new char[size];
      ndigits = left.ndigits;
      
      for(unsigned i=0; i<ndigits; i++){
            digits[i] = left.digits[i];
      }
      
      *this += right;
}

inline char BigInt::fetch(unsigned i) const{
      return i<ndigits ? digits[i] : 0 ;
}


/*
  引用计数版本的BigInt——RCBigInt,内部封装智能指针RCPtr<BigInt>,这样就可以“赋值时复用”和“自动释放”
*/
class RCBigInt {
      friend RCBigInt operator+ (const RCBigInt&, const RCBigInt&);
public:
      /*RCBigInt*/
      RCBigInt (const char *p): value(new BigInt(p)){}
      RCBigInt (unsigned u=0): value(new BigInt(u)){}
      RCBigInt (const BigInt& bi): value(new BigInt(bi)){}
private:
      RCPtr<BigInt> value;
};

inline
RCBigInt operator+ (const RCBigInt& left, const RCBigInt& right){
      return RCBigInt( *(left.value) + *(right.value) );
}

/*test assignment*/
void testBigIntAssign(int n){
     //单纯继承了RCObject的BigInt只是拥有了refCount,但并不能够在赋值时复用曾经在堆中的对象,它和普通的类型效果一样 
     BigInt a, b, c;
     BigInt d = 1;
     
     time_t start = time(0);
     for(int i=0;i<n;++i){
         a = b = c = d; //慢,∵每次在堆中创建新的 
     }
     time_t end = time(0);
     
     printf("%d\n", end-start);
}

void testRCBigIntAssign(int n){
     //只有使用了"基于引用计数的智能指针RCPtr"以后,BigInt才能在赋值时复用曾经在堆中的对象 
     RCBigInt a, b, c;
     RCBigInt d = 1;
     
     time_t start = time(0);
     for(int i=0;i<n;++i){
         a = b = c = d; //快,∵复用已经创建好的 
     }
     time_t end = time(0);
     
     printf("%d\n", end-start);
}

/*test creation*/
void testBigIntCreate(int n){
          
     time_t start = time(0);
     for(int i=0;i<n;++i){
         BigInt a = i;
         BigInt b = i+1;
         BigInt c = i+2;
         BigInt d = i+3;  
     }
     time_t end = time(0);
     
     printf("%d\n", end-start);
}

void testRCBigIntCreate(int n){ 
          
     time_t start = time(0);
     for(int i=0;i<n;++i){
         RCBigInt a = i;
         RCBigInt b = i+1;
         RCBigInt c = i+2;
         RCBigInt d = i+3;  
     }
     time_t end = time(0);
     
     printf("%d\n", end-start);
}

int main(){
    testRCBigIntCreate(5000000);
    testBigIntCreate(5000000);
    
    testRCBigIntAssign(500000000);
    testBigIntAssign(500000000);
    
    system("pause");
    return 0;
}

 

 

 

 

 

分享到:
评论

相关推荐

    C++引用计数设计与分析(解决垃圾回收问题).docx

    C++引用计数设计与分析(解决垃圾回收问题).docx

    引用计数的c++源码实现

    引用计数的实现,c++源码实现,工程可编译,利用模板实现的,项目中可直接使用。部分代码是从webkit中引用计数直接引用过来的

    C++ 引用计数技术及智能指针的简单实现

    一直以来都对智能指针一知半解,看C++Primer中也讲的不够清晰明白(大概是我功力不够吧)。近花了点时间认真看了智能指针,特地来写这篇文章。  智能指针是什么  简单来说,智能指针是一个类,它对普通指针进行...

    COM学习——动态绑定之引用计数

    COM入门学习实例,c++程序实现引用计数易于理解,动态绑定相关

    C++实现 带引用计数的智能指针

    C++实现 带引用计数的智能指针 VS2008工程文件

    MyString 字符串类仿写_C++_(四种版本,引用计数,迭代器,加锁)

    MyString 字符串类仿写_C++_(四种版本,引用计数,迭代器,加锁)

    smartptr——基于自动引用计数的智能指针

    智能指针相信大家听说过吧,我理解的智能指针,既是一个C++模板类,重载了指针操作符...内部实现的关键在于:自动地址引用计数、操作符重载。 可以实现任意类型(基本数据类型、自定义类型)的指针地址的自动引用计数。

    C++智能指针实现

    对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数为减至0,则删除对象),并增加右操作数所指对象的引用计数;调用析构函数时,构造函数减少引用计数(如果引用计数减至0,则删除基础...

    c++智能指针的实现

    对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数减至0,则删除对象),并增加右操作数所指对象的引用计数; 调用析构函数时,减少引用计数(如果引用计数减至0,则删除基础对象); ...

    C++浅拷贝与深拷贝及引用计数分析

    C++浅拷贝与深拷贝及引用计数分析 在C++开发中,经常遇到的一个问题就是与指针相关的内存管理问题,稍有不慎,就会造成内存泄露、内存破坏等严重的问题。不像Java一样,没有指针这个概念,所以也就不必担心与指针...

    C++智能指针实现(包含拷贝构造,赋值函数,引用解引用重载)

    C++智能指针实现(包含拷贝构造,赋值函数,引用解引用重载) 帮助初学者掌握智能指针的实现原理,采用引用计数方式实现

    effecttive c++ 英文

    该书介绍了C++编码规范以及编程过程中需要注意的地方,内容包括指针、引用、类型转换、运算符、异常、效率、引用计数、代理类以及虚函数等内容,是C++编程书籍中的经典之作。 有人这么形容这本书:程序员...

    C++多项式运算类

    自己数据结构实习编的的c++多项式运算类,并且运用了引用计数的技巧!!

    More Effective C++.pdf 高清 目录

     全面地描述了C++专家所使用的高级技术,包括placement new、虚构造函数、智能指针、引用计数、代理类和双重分派等。  本书主要特点:以实例说明异常处理从结构上及行为上给C++类和函数带来的巨大影响。  从...

    Effective C++ 3rd(中文版)part1

    它也记述了像 smart pointers(智能指针),reference counting(引用计数)和 proxy objects(代理对象)这样的重要的 C++ 编程技术。 Effective STL 像 Effective C++ 一样是一本面向指导方针的书,但是它专注于...

    Effective C++ 3rd(中文版)part2

    它也记述了像 smart pointers(智能指针),reference counting(引用计数)和 proxy objects(代理对象)这样的重要的 C++ 编程技术。 Effective STL 像 Effective C++ 一样是一本面向指导方针的书,但是它专注于...

    高速上手 C++ 11/14.欧长坤(带书签文字版).pdf

    第五章 对标准库的扩充:引用计数与智能指针 58 一、本节内容 58 二、 与引用计数 58 三、 59 四、 60 五、 62 总结 64 进一步阅读的参考资料 64 第六章 正则表达式库 66 一、本节内容 66 二、正则表达式...

    《C++编程艺术》教程+代码

    2.3.1 引用计数 9 2.3.2 标记并清除 9 2.3.3 复制 9 2.3.4 采用哪种算法 9 2.3.5 实现垃圾回收器 10 2.3.6 是否使用多线程 10 2.3.7 何时回收垃圾 10 2.3.8 关于auto_ptr 11 2.4 一个简单的C++垃圾回收器 11 2.5 ...

    More Effective C++

    条款29:Reference counting(引用计数) 183 条款30:Proxy classes(替身类、代理类) 213 条款31:让函数根据一个以上的对象型别来决定如何虚化 228 Making functions virtual with respect to more than one ...

Global site tag (gtag.js) - Google Analytics